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20. Abstract 
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both the cell discharge life and cell safety improved. 
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surface corrosion after 12-month storage.  The surface film formed during the 
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D-cells did not adversely influence the cell pressure at the end of IQQZ  depth of 
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1.0  INTRODUCTION 

Safe performance of the lichium-chionyl chloride (1-3) electrochemistry is 

important if it is to become a viable candidate for potential Navy applications. 

Some of the safety hazards associated with the system under various conditions 

have hindered its acceptability despite its many superior performance characteristics. 

The widely accepted reaction mechanism, 

S0C12 + 2e 2 Cl~ + -jS + -7SO2 

is not fully understood.  The intermediate reaction species generated by chemical 

and electrochemical reactions are not identified fully. 

Recent studies (4,5) on electrocatalytic reduction of SOCI2 indicate possible 

reactions involving destabilization of intermediate reduction species via further 

fast electrochemical reduction and/or modification of the overall reduction 

mechanism.  Thus, at the catalyzed cathode surfaces, the reaction mechanism is 

simplified resulting in a safer Li/SOCl^ system. 

The broad objective of this program is to define, understand, and seek out 

solutions for the safety problems associated with reserve Li/S0Cl2 cells/batteries 

Both catalyzed and uncatalyzed cathodes are used in these studies.  The two 

catalysts selected are electrolyte-soluble iron phthalocyanine, FePc, and 

electrolyte-insoluble polymeric cobalt phthalocyanine (CoPc)n.  Of these, FePc 

has the best catalytic activity for reduction of SOCI2 in reserve systems.  However, 

even though (CoPc)n has lower catalytic activity than FePc, its insolubility makes 

it a better candidate for active batteries and reserve batteries requiring long 

discharge life. 

Cell design, whether catalyzed or not, is the primary influence on safety of 

Li/S0Cl2 cells/batteries.  Both electrode design and electrolyte management are 

significant factors; specific program objectives were therefore to: 

•   Determine cell internal pressure characteristics at various discharge 

depths over a wide range of temperatures.  This provides the needed data for 

vent design at both the cell and battery levels. 
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• Evaluate long term reservoir storage capability with and without catalyst. 

• Evaluate the effect of electrode design (anode-limited vs cathode-limited) 

on safety during forced overdischarge into reversal, with and without 

(CoPc) catalyst. 

• Elucidate reaction mechanisms and identify intermediate reactive species. 

  •MtfM^MMb u 
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2.0  INTERNAL CELL PRESSURE CHARACTERISTICS 

Internal cell pressure is one of Che uncertain safety factors associated with 

L1/S0C12 systems under a variety of use and abuse conditions, and significantly 

impacts the design approach for safety vents in Li/S0Cl2 hardware.  In the 

L1/SOC12 system, internal cell pressure increases with storage temperature 

and time, the extent depends upon depth of discharge.  Standard D-size 

cells, equipped with pressure transducers, were used to measure this pressure 

response.  These data can be used to aid in designing safety vents for Li/S0Cl2 

reserve batteries.  A total of eight cells were built to accomplish this task. 

Four of these cells contained (CoPc)  catalyzed cathodes; the reaminder were n 
built with uncatalyzed baseline cathodes. 

CELL COMPONENTS 

Anode 

A 0.020" thick lithium foil (Foote Mineral Company) was used, with two pieces 

sandwiched around a 316L stainless steel current collector.  The physical data 

of the anodes were: 

Dimensions: 1.75" x 6" x 0.020" 

Area: 135.5 cm2 

Weight (of lithium):   3.676g 

Anode Capacity:       3.676 grams x 3.86 Ah/gram (theoretical) 

- 14.19 Ah 

•    Cathode 

All cathodes were fabric-r.ed via the process described in Figure 1.  Baseline 

cathodes contained 1002 compressed-grade Shawinigan acetylene black (SAB) and 

Teflon-6 binder in a 95/5 weight percent ratio.  The (CoPc)n catalyzed cathode 

composition was 902 SAB, 32 catalyst and 52 Teflon-6 binder.  Two cathode pads 

were pressed on either side of a 316L stainless steel current collector. 

*  ^ 
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The physical characteristics of the cathode pads were: 

Dimensions: 1.75" x 8" x 0.040" (one piece) 

1.75" x 9" x 0.040" (second piece) 

Baseline Cathode 

192.0 cm2 

3.94 g 

19.501 ml 

0.356 g/ml 

(95 x 6.94 T 1.95) T 100 - 3.381 ml 

(5 x 6.94 T 2.2) T 100 * 0.258 ml 

.'.  Total solid volume of cathode:  3.381 + 0.158 • 3.539 ml 

Void space in the cathode:  19.501 - 3.539 - 15.962 ml 

Porosity: (15.962 * 19.501) x 100 - 81.85Z 

Projected CathodaCapacity: 6.94 grams x 1.75 Ah/gram » 12.14 Ah 

Total Cathode Area: 

Total Weight of Cathode 

Volume: 

Density: 

Carbon Volume: 

Teflon Volume: 

Catalyzed Cathode 

Total Cathode Area: 

Total Weight of Cathode: 

Cathode Volume: 

Density: 

Carbon Volume: 

Teflon Volume: 

Catalyst Volume: 

192.0 cm2 

7.31 g 

19.501 ml 

0.375 g/ml 

(90 x 7.32 T 1.95) T 100 - 3.374 ml 

(5 x 7.31 T 2.2) T 10D - 0.166 ml 

(5 x731 i 2.2) T 100 - 0.116 ml 

(Catalyst Density estimated to be 2.2 g/  ) 

Total Solid Volume:       3.374 + (0.166 x 2) - 3.706 ml 

Void space in the cathode: 19.501 - 3.706 - 15.795 ml 

Porosity: 15.795 T 19.501 - 81Z 

Projected Cath«d« Capacity: 7.31 grams x 2.0 Ah/gram - 14.62 Ah 



I "•' I •IP'IP" .  "•-• -— •— —_ 

•  Separator Material 

Non-woven glass mat separators, manufactured by the Manning Paper Company, were 

used. The physical data were: 

Dimensions: 

Area: 

Volume: 

Weight: 

Porosity: 

Solid Volume: 

Void Space: 

2" x 11" x 0.005" 

141.94 cm2 (each side) 

1.802 ml 

0.432 g 

90% 

1.802 x 10 
100 

1.622 ml 

0.180 ml 

•   Current Collector 

Stainless steel 316L current collector grids and leads (Lancaster Manf. Co., PA) 

were used for both anode and cathode.  The selection of 316L stainless steel 

was based on the fact that this same material was being used under Contract 

N60921-81-C-0351, supported by NSWC. 

Anode Grid Dimensions: 

Weight: 

1.6" x 5.5" x 0.010" 

1.318 g 

Cathode Grid Dimensions: 

Weight: 

Volume: 

Density of Grid: 

Density of 316L SS: 

.'.  Solid Volume of Grid: 

Void Space: 

1.6" x 7.5" x 0.010" 

1.688 g 

1.966 ml 

1.688 i 1.966 - 0.8586 g/ml 

8.00 g/fol 

(0.85686 x 1.966)  T 8.0 - 0.211ml 

1.966 - 0.211 -  1.755 ml 

-• 
•   • 
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•   Insulators 

Tefzel sheets, 0.005" thick and 1.27" in diameter, were used at both top and 

bottom of the electrode wrap as insulators.  The top insulator had a 0.10" 

slit slightly off center through which the anode lead passed. 

D-cell cans (316L S.S.), terminal plates, grids and leads were cleaned in 

methyl ethyl ketone (MEK) before use.  Leads were spot welded to current collectors, 

the cathode lead was spot welded to the cell case, the anode lead was spot 

welded to the center pin, and the cell was closed by laser welding the terminal 

plate to the cell case. 

EFFECT OF INTERMITTENT DISCHARGE ON CELL PRESSURE 

Four D-cells, two with baseline cathodes and two with (CoPc) catalyzed cathodes, 
n 

were activated by vacuum fill technique.  In each cell, 28 ml of 1.5M LiAlCWSOClj 

electrolyte was added to fill up the void space in the electrode stack.  The 

theoretical capacity of the electrolyte was approximately 21 amp-hours.  Thus, 

the cell was insured of flooded condition throughout its life since the maximum 

theoretical output of the cell design was 14.2 Ah based on lithium weight. 

After activation the cells were allowed to stand at ambient temperature for 

6 hours and then they were placed in an environmental chamber built by Tenney 

Engineering, Inc., New Jersey.  This chamber, Model #BTR, was equipped with a 

programmable memory for heat-cool cycles and a battery backed power to protect 

the memory in case of electrical failure.  For the present study, the chamber 

was programmed to cool down to -40^C from ambient temperature in two hours 

and then start heat-cool cycles.  During these cycles, the temperature was 

programmed to increase or decrease by 11 C and come to equilibium.  A total 

of 45 minutes was allowed for each change in temperature.  For each heat-cool 

cycle between -40° and 71 C, a total of 15 hours was required. 

Fresh cells were subjected to six heat-cool cycles. A small increase in pressure 

between 38 and 71 C was observed after six cycles.  However, no hysterlses 

between pressure and temperature were observed. 

, 
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These cells were then discharged to approximately 50% depth of discharge at a 

constant current of 0.192A (1 mA/cm2), after which six heat-cool cycles were 

carried out.  In Figures 2 and 3, the relationship between pressure and temp- 

erature for tne first and the last cycle is shown.  It should be noted that 

the pressure values were not corrected for the void space in the pressure 

transducer.  Mo significant differences were found between catalyzed and 

uncatalyzed cells.  During heat-cool cycles, the small hysterises recorded could 

be attributed to the insufficient time allowed to reach equilibrium temperatures. 

After heat-cool cycles, the above cells were further discharged to 0.7 volts 

and then subjected again to six more heat-cool cycles.  In Figures 4 and 5, 

the pressure-temperature behavior is plotted for the first and sixth cycle. 

Since the pressure values were not corrected for the extra void space due to 

pressure transducer and valve, the pressure in an actual D-cell will be higher 

than reported in Figures 1-5.  Actual cell pressure at 71°C is expected to be 

approximately 100 psi for both catalyzed and uncatalyzed cells. 

The discharge characteristics and the pressure of cells with dept of discharge 

are plotted in Figure 6 and 7. The cell with the catalyzed cathode showed 

nearly 150 mV higher voltage than the one with an uncatalyzed cathode. However, 

the cell life and pressure were not significantly effected by (CoPc)n catalyzed 

cathodes at the low current discharge rate of 1 mA/cm2. 

EFFECT OF CONTINUOUS DISCHARGE ON CELL PRESSURE 

In order to check if any chemical changes took place when the cells were subjected 

to heat-cool cycles after each depth of discharge, four fresh D-cells were 1002 

discharged and then were subjected to heat-cool cycles. The discharge character- 

istics along with the internal pressure of cells with baseline cathodes (two 

cells) and (CoPc)Q cathodes (two cells) are given in Figures 8 and 9, respectively. 

The cell pressures reported in Figures 8 and 9 are the corrected values for the 

void space due to pressure transducer and the valve attachments. The pressure 

levels at the end of discharge for this mode of continuous discharges are, for 

practical purposes, the same as the ones that were intermittently heated and 

cooled (See Figures 6 and 7). 

•MtfM J 
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1 
The four D-cells after 100% depth of discharge were subjected to heat-cool 

cycles.  In Figures 10 and 11, the pressure-temperature hysteresis of these 

cells are given.  Again, no severe deviation was observed from the behavior 

found in cells which were subjected to several heat-cool cycles at various 

depths of discharge shown in Figures 4 and 5.  The maximum pressure buildup 

under normal discharge conditions (100% DoD to 0.0 volts) is less than 

100 psig. 
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3.0  LONG TERM RESERVOIR STORAGE CAPABILITY 

Stainless steels in the 300 series are commonly used in Li/SOCl2 batteries for 

hardware parts.  The popular acceptance of 316L stainless steel is mostly 

based on its apparent compatibility with LiAlClu"S0C12 electrolyte in active 

primary cells, but no systematic evaluation of its long term storage compati- 

bility with electrolyte for reserve batteries, which require several years of 

storage, has been carried out. 

In this program, the compatibility of both 316L and 321 stainless steel in 

neutral and acidic electrolytes was evaluated.  Stability of the polymeric 

cobalt phthalocyanine catalyst and its corrosivity effect on 316L and 321 S.S. 

were also examined in a neutral electrolyte environment. 

Glass ampuls were selected to store the electrolyte according to the storage 

test plan shown in Table 1 and 2.  The electrolytes were 1.5M LiAlClu'S0C12 and 

(0.5M LiAlClu + 2.3M AlCl3)S0Cl2.  (Acidic electrolyte was included because of 

the potential application by the Navy for higher rate reserve batteries). 

Table 1.  Test Plan and Ampul Preparation 

Group A 1.5M LiAlClu/S0C12 and (CoPc)  catalyst 

Group B "        and 321 stainless steel 

GrouF C "        and 316L stainless steel 

Group D 2.3M A1C13 + 0.5M LiAlClu/S0C12 and 321 stainless steel 

Group E " " and 316L stainless steel 

Group F 1.5M LiAlCWSOCl2 and 321 stainless steel and (CoPc)  catayst 

Group G "        and 316L stainless steel & (CoPc)  catalyst 

The sealed ampuls with catalyst (Group F & G) and without catalyst (Group B, C, 

D and E) were stored at 32°C and 71°C, respectively.  Group A ampuls were stored 

at ambient temperature.  In reserve battery applications for the Navy, the 

maximum operating temperature is 32°C.  Since the catalyst is a part of tha cathode 

PRBC£DlbQ PiOS BUNK-MOT Tlu-tD 
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1 
composition and thus physically separated from the electrolyte during storage, 

the catalyst experiences operating temperature conditions only at 32 C (max). 

The thionyl chloride from Mbday Chemicals was distilled once before electrolyte 

preparation.  The 1.5M LiAlClu*S0Cl2 solution was made by adding 1.5 moles of 

dried LiCl (Fisher Chemicals) and 1.5M A1C13 (Fluka Grade) to the distilled 

SOCI2 in a 1 liter flask.  The acidic electrolyte was made by adding 0.5 mole 

of LiCl and 2.8 moles of AICI3.  Both electrolytes were mechanically stirred for 

1-2 hours.  Each ampul contained 10 ml of electrolyte. 

The 316L and 321 stainless steels tested in these studies were sheared into 

strips 0.2" wide and 2" long.  The 316L stainless steel was 0.005" thick; the 

321 stainless steel was 0.025".  Only half of the length of these specimens was 

immersed in the electrolyte and the other half remained above the electrolyte in 

a sealed ampul. 

In preparation for storage, the stainless steel strips were washed in a hot 

(70°C) solution of 170 g Pennwalt Alkaline Detergent #36 cleaner in 1500 ml H20, 

heated in this solution for 5 minutes, and then rinsed with water. After rinsing, 

they were placed for 10 minutes in a 45 C pickling solution containing 20% by 

weight of water, followed by another rinsing in two successive H20 baths.  After 

the double rinsing, the strips were placed for 30 minutes in a hot (55 C) 

passivation solution made by slowly adding first 500 ml of cone. HNO3 and then 

56.2 g Na2Cr207 to 2 liters of water, after which they were washed again in 

two successive H2O baths.  The strips were then dried of their excess water with 

paper towels and vacuum dried at HO C overnight. 

The (CoPc)  catalyst was synthesized and washed with 5X  HC1 to remove uncomplexed 

cobalt ions.  It was then heat treated at 550°C  for two hours in an inert 

atmosphere.  After cooling to ambient temperature, 0.11 g was added to each 

storage ampul. 

EVALUATION OF ELECTROLYTE AND STAINLESS STEEL SPECIMENS 

Four ampuls from each group were taken out of storage for cobalt and iron analysis 

after each period.  The ampuls containing stainless steel, both with and without 

23 



catalyst, had undergone some yellow discoloration, more intense with the 

acidic electrolytes than with neutral electrolytes.  The intensity of 

discoloration increased with storage time.  After breaking the ampuls, the 

electrolyte was vacuum filtered, and 12 ml of distilled water was added to 

decompose S0C12. 

•   Electrolyte 

To determine the presence of cobalt, a few drops of 1, 10-phenanthroline in 

30:50 methanol-water (1% by weight) was added to the aqueous solution.  A 

light blue color would indicate the presence of cobalt ions, but none of the 

ampuls tested so indicated - showing the catalyst to be stable for 12-month 

storage. 

Quantitative determination of Fe was done (using U.V. absorption technique) 

on all groups of ampuls by pipetting 5 ml of electrolyte solution into a 100 ml 

flask, adding 15-20 ml of water, and allowing the mixture to cool. . The following 

reagents, in the order listed, were added: 

a) 30 ml of a 50:50 (by volume) mixture of methyl ethyl ketone 

and methanol 

b) 5 ml of a 30Z by weight NH^SCN solution 

c) 5 ml of a 102 by weight (NHu)2S20u solution 

d) 10 ml of 1:1 HC1 solution 

e) Dilute to mark with deionized water and mix well 

A blank containing all reagents, except the electrolyte solution, was also made. 

The presence of iron in these solutions gave an orange coloring.  The absorbance 

of each versus the blank was measured at 475 nm using the Bausch and Lomb 

Spectronic 20.  The concentrations in each solution are given in Table 3, as 

based on a single absorption experiment. 

i    i mi urn 
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Table 3.  Iron Concentration in the Electrolyte After Storage 

Fe Concentration, ug/nil of Electrolyte 

Group 

A 

B 

C 

D 

E 

F 

G 

1.5M LiAlClu/SOCla 

(2.3M AlCla + 0.5M LiAlClu)/S0Cl2 

1 Month 4  Months 7 Months 12 Months 

8.65 8.70 21.65 9.93 

3.02 4.56 2.65 2.84 

2.65 3.08 2.84 3.15 

3.80 4.69 13.32 8.08 

2.22 3.08 5.42 5.30 

14.25 13.01 20.10 21.03 

7.90 12.00 21.03 17.0 

1.60 - - - 

0.37 - - - 
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Examination of Table 3 reveals that the iron concentration in the electrolyte 

in Groups B to E remains unchanged whereas in Groups F and G it increases 

slightly.  The source of iron in ampul A was identified to be the stainless 

steel container used to heat treat the (CoPc)n catalyst at 550 C.  Therefore, 

the higher values found in Groups F and G are the sum of the contamination 

in Groups A and B, and A and C, respectively.  Since the stainless steel 

specimen did not contribute Fe contamination on storage in thionyl chloride 

electrolyte, experiments were not repeated with a Fe free (CoPc)n catalyst. 

•   Stainless Steel Specimens 

The stainless steel specimens were separated from the electrolyte after 

reaching their storage periods noted in Table 2. The samples were washed 

with pure S0C12 and the excess solvent was removed with soft paper towels 

and dried under vacuum for several days (at least 7 days). 

The specimens immersed in the neutral electrolyte showed no visible signs 

of corrosion, however, both the 316L and 321 strips stored in the acidic 

electrolyte showed light brown discoloration of their surface that were 

not immersed in the electrolyte.  The surface and microstructural integrity 

of the electrolyte immersed and non-immersed portions of all stored specimens 

were subjected to both SEM and metallographic analysis. 

SEM photomicrographs of stainless steel surfaces,fresh and after 4- and 12-month 

storage at 71 C,are shown in Figures 12-32.  The photomicrographs show that 316L 

and 321 stainless steel surfaces were corroded in both the neutral and acidic 

electrolytes.  The acidic electrolyte attacked the surface much more severely 

than neutral electrolyte.  The surface corrosion appeared to slow down with 

storage time by the corrosion film. The part of the specimen that was not 

immersed, but exposed to electrolyte vapor, also exhibited surface corrosion 

similar to the part immersed directly in the electrolyte. 

In order to evaluate the depth of the corrosion film, the cross sections of 

the specimens were examined by optical metallographis technique. 
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The specimens were then cut and the edges were polished and etched before 

they were metallographically examined.  Both the immersed and non-immersed 

(i.e., exposed to vapor phase) edges of the specimens were studied. 

In Figure 33, the photomicrographs of the edges of fresh 321 and 316L 

stainless steel specimens are given.  The optical metallographic studies 

of these specimens after exposure to both acidic and neutral electrolyte 

for 1, U  and 7 months (12-month stored specimens were not analyzed by this 

technique) at 71°C revealed no significant penetration of corrosion into the 

specimens.  For example, the photomicrographs of specimens after 7-month 

exposure showed no significant difference from specimen-to-specimen 

(Figures 34 - 39).  Based on this limited study, it can be concluded that 

the surface corrosion of both 316L and 321 stainless steel specimens takes 

place and that these surface films either eliminate or significantly reduce 

further corrosion in both acidic and neutral electrolyte.  In addition, the 

presence of (CoPc)n catalyst does not appear to affect the surface corrosion. 

In conclusion, we believe that both 316L stainless steel and 321 stainless 

steel can be used as materials of construction for the electrolyte reservoir 

in reserve batteries.  In cell design that uses stainless steel as the 

positive collector grid, however, the influence of the surface film on cell 

polarization should be determined, especially in applications that require 

high intermittent pulses during a long operating mission life. 
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4.0  FORCED DISCHARGE INTO REVERSAL 

One of the problems related to a multicell battery is that some of the 

cells might go into reversal on load and create hazards.  The extent of the 

safety hazard depends on cell design, i.e., anode-limited or cathode-limited. 

To evaluate the impact of cell design features on safety, spirally wound cells 

(Figure 40) were built and tested at various discharge and forced overdischarge 

current densities.  Each cell was equipped with a pressure transducer and a 

valve for activation and for tapping gas samples.  Twelve (12) cells were also 

equipped with internal thermocouples.  The glass container was placed in a plastic 

jacket for protection from flying glass pieces if an explosion was to occur. 

There were six types of wrap cells studied: 

Anode-limited cell without catalyst 

Anode-limited cell with (CoPc) catalyst 
n 

Anode-limited cell with FePc catalyst 

Cathode-limited cell without catalyst 

Cathode-limited cell with (CoPc)  catalyst 

Cathode-limited cell with FePc catalyst 

ANODE-LIMITED DESIGN 

Anode-limited cells were built with two layers of 0.008" thick lithium foil. 

Since it was felt that the concentration of LiCl in the discharged cell appears 

to contribute to the cell behavior under reversal conditions, the cells were 

built with 4.88 + 0.42 Ah of theoretical lithium capacity instead of without 

lithium on the current collector (316L stainless steel).  The physical 

characteristics of the anode-limited cell components were: 

Anode    Dimensions:*       1.75" x 3.75" x (0.011 + 0.001)" 

No. of Pieces:  "  2 

Anode Weight:      1.27 + 0.11 g 

Anode Capacity:    4.88 + 0.42 Ah 

* For cells 1, 2, 3       1.75" x 3.75" x 0.006" 

Anode Wt.   0.75 g; Capacity 2.89 Ah 
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FIGURE 40.  LABORATORY CELL FIXTURE TO SIMULATE D-CELL TESTS 
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Cathode 

Steel 

Grids 

Dimensions:      1.75" x 3.6" x 0.010" for anode 

1.75" x 3.9" x 0.010" for cathode 

Separators:     Manning Non-Woven Glass Mat 

Dimensions:  2" x 8.5" x 0.005" 

No. of Pieces/Cell:    4 

Electrolyte: 1.5M LiAlClu/S0Cl2 

Amount 17 ml or 20 ml 

Attachments: Pressure Transducer 

Pressure Relief Valve 

Volume:  3 ml 

A total of 18 anode-limited cells were built.  The effect of the quantity 

of lithium and the quantity of electrolyte were tested for cell safety 

during forced overdischarge into reversal.  Cells 1-13 contained 20 ml of 

electrolyte and cells 14-18 contained 17 ml of electrolyte. All cells were 

discharged at a constant current of 1 mA/cm2 (based on cathode area) with 

diode protection.  Each experimental setup consisted of 3 cells connected in a 

series and discharged and forced overdischarged.  The average voltage, discharge 

time and the cell pressure at the end of 100Z depth of discharge to 0.7 volts 

are given In Table 4.  Cells with catalyzed cathodes have higher voltages than 

cells with baseline cathodes.  Cells 12, 15 and 18 contained tetrasulphonated 

iron phthalocyanine (TsFePc) catalyst.  This catalyst is water soluble and 

therefore can be impregnated easily and efficiently onto the carbon electrode. 

In the case of the FePc catalyst, which was added to the electrolyte before 

activation, severe voltage delays were encountered if the activated cells were 

not subjected to discharge within ten minutes.  With TsFePc impregnated cathodes, 

the voltage delay effects were slightly minimized, however, the cell voltages 

were lower with TsFePc than with the FePc catalsyt. 

After discharge to 0.7 volts,  the diodes were removed and cells were subjected 

to forced overdischarge into reveral at various current densities.  The cell 

voltages and the pressures at the ends of the noted depths of discharge at their 

corresponding current densities »re given in Table 5.  Cells 1-3, which contained 
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Table 4.  Discharge Performance of Anode-Limited Cells 

Cell 
No. Catalyst 

Rate, 
mA/cm2 

Discharge 
to 2.0 V, 

20 

Time 
(Hrs) 

Avg. Cell 
Voltage 
(volts) 

3.40 

Pressure at 
100% DOD, psis? 

1 10 

2 (CoPc) 
n 

26 3.50 18 

3 FePc 30 3.50 6 

4 - 36 3.38 3 (leak) 

5 (CoPc) 36 3.50 18 

6 FePc 35 3.51 3 

7 - 28 3.38 10 

8 (CoPc) 
n 28 3.48 18 

9 FePc 28 3.51 3 

10 - 21 3.39 11 

11 (CoPc) 
n 31 3.50 10 

12 TsFePc 27 3.50 18 

13 - 40 3.36 10 

14 (CoPc) n 49 3.51 16 

15 TsFePc 46 3.52 18 

16 - 35 3.39 10 

17 (CoPc)n 40 3.49 16 

18 TsFePc 43 3.50 12 

Note:  Variation in the discharge time is due to variation in 
the anode thickness. 
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Table    9.     Ovardlscharga  of   inoda-Liaicad  Calls   Into   Ravarsal 

Praasura ac 

Call Ovardlscharaa 
Raca (nA/ca3) 

2 

Call B00B cha End :>£ 

So. Catalyst Volcaga, V 

70 

Ovardlscharia, salt 

1 -1.2 U(U 

2 «*«>, 2 2.4 30 18(1) 

3 FaPe 2 5.0 30 „Cl> 

4 . 5 -4.0 100 20 

10 -5.6 100 98 

20 -4.6 100 180 

30 -3.1 150 220 

3 (CoP=)3 5 -4.0 100 46 

10 -4.9 100 114 

20 -4.8 100 231 

30 -4.9 150 240 

i FaPc 5 -4.4 100 22 

10 -3.4 100 48 

20 -4.1 100 177 

30 -4.2 150 195 

7 . 5 -3.9 125 37 

10 -4.3 100 92 

13 -4.7 100 156 

20 -4.3 100 213 

30 -3.7 100 280 

9 lCoPc)a 5 -3.3 100 51 

10 -3.3 100 38 

13 -4.2 100 160 

20 -4.6 100 280 

30 -9.0 5 320 « 

9 FaPe 3 -4.43 125 23 

10 -3.15 100 70 

13 -3.2 100 121 

20 -5.2 100 191 

30 -4.13 100 224 

10 - 2 -1.23 S3 » ; 
u (Cofc)n 2 -5 53 19.2 f 3 

12 TsFnPe 2 -4.95 53 39.3 

13 - 3 -3.3 100 71 

10 -5.6 too 130 

13 -6 100 ISO 

20 -4.7 100 193 

30 •4.2 100 236 

14 (CoPc)n 5 Call fallad aftnr 1 hr. 3 >100 

13 T»r«Pc 3 -3.3 100 33 

10 -5.5 Call flxcura 
10 aA/ca1, ac 

•hactarad aitar 2 hri. at 
a praaaura of 134 pal. 

16 - 5 -5.1 100 7! 

10 -6.4 67 130 

II (CoPc)0 5 -4.6 100 70 L 4 
10 -*.« 67 136 

It TaFaPc 5 -4.6 100 97 

10 -6.2 67 166 

(1) Forcad ovardlscharga loco ravarsal was atoppad bafora calls vancad. 
12) Sceppad bacauaa of continuous voltata drop. 
(3) Ta*c aouipaanc  fsllura Forcad  to diabandon  chaaa calls  bafora  »anting. 
(4) stoppad aftar  10 aA/ca' forcad ovardiacharga bacsusa of hl|h call praasuras. 

61 

- •MB 



0.75 g of lithium, showed severe voltage drops during forced overdischarge even 

at 2 mA/cm2.  Therefore, they were discarded.  The abnormal drop in voltage in 

these cells could be due to electrode stack pressure.  Cells 4—18 , containing 

approximately 1.27 +0.11 g of lithium on the anode grid, also showed high 

voltage drops ranging from -4.0 to -7.0 volts. 

Cells 14-18, which contained only 17 ml of electrolyte, also showed very high 

pressures and hence were discontinued.  The cause of high pressure buildup 

could have been due to heat generation in the not-so-flooded cells.  Cells 4-13, 

regardless of cathode type, sustained forced overdischarge current up to 30 mA/cm2. 

During cell reversal, severe heat generation occurred and, therefore, very high 

pressures were recorded.  However, in direct contrast to the cathode-limited cell 

design (see below under Cathode-Limited Design), the anode-limited design 

cells under flooded conditions did not vent even after 30 mA/cm2 overdischarge 

currents.  Typical discharge and forced overdischarge characteristics of anode- 

limited cells are given in Figures 41-46. 

All cells were dismantled immediately after cell reversal.  Temperatures 

of more than 100 C were measured in the open electrode stack in all cells.  The 

actual temperature during cell reversal studies, therefore, could be much higher 

than 100 C as measured in the open electrode stacks. 

CATHODE-LIMITED DESIGN 

Cell reversal studies with cathode-limited design were conducted in order to 

assess the design impact on safety.  Cells tested consisted of baseline cathode, 

(CoPc)  catalyzed cathodes and FePc catalyzed cathodes.  Cathode-limited wrap 

cells were first discharged with diode protection and after removing diode, 

then forced overdischarged into reversal.  Each experimental setup consisted of 

3 cells connected in series during both discharge and reversed overdischarge. 

The physical characteristics of the cathode-limited cell components were: 

Anode - Two pieces of lithium sandwiched on grid. 

Dimensions:   1.75" x 3.75" x 0.020" (two pieces) 

Weight:       2.35 g 

Capacity:     2.35 x 3.86 - 9.07 Ah 
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Cathode 

Dimensions:     1.75" x 4.5" x 0.040" (first piece) 

1.75" x 4.0" x 0.040" (second piece) 

Area: 96.0 cm2 

Volume: 9.75 ml 

Weight: 3.7 - 3.9 g 

Void Space:     81.85% baseline cathode 

(i.e., 0.8185 x 9.75 - 7.98 cc) 

82Z (CoPc)n cathode 

(i.e., 0.81 x 9.75 - 7.90 cc) 

Stainless Steel Grids 

Dimensions:     1.75" x 3.6" x 0.010" for anode 

1.75" x 3.9" x 0.010" for cathode 

Separators - Manning Non-Woven Glass Mat 

Dimensions:     2.0" x 8.5" x 0.005" 

No. pieces used/cell:   4 

Volume: 2.786 ml 

Porosity:      90Z 

Void Space:     0.9 x 2.786 - 2.51 cc 

Electrolyte - 1.5M LiAlCWSOCla 

Amount: 20 ml/cell 

Cell Case - Compatibility Glass Tube 

Volume: 32 ml 

* Cells 19-21, Cathodes - 1.75" x 5.25" x 0.04" (First piece) 
1.75" x 4.5" x 0.04" (Second piece) 

Area - 110 cm2 

Anode - 1.75" x 4.25" x 0.020" (Two pieces) 
Dimensions of separators and grids were also changed accordingly, 
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Attachments 

Thermocouple (For 12 cells only) 

Pressure Transducer 

Pressure Relief Valve 

Volume: 3 ml 

A total of 27 cathode-limited cells with the above electrode desi? 

and tested.  The cells were discharged at constant current of 1 nu 

#29-30 at 5 mA/cm2) with diode protection.  The discharge voltage 

the pressure of cells without thermocouple (Cell //19 to 33) at th 

100Z depth of discharge to 0.7 volts is given in Table 6.  Slight 

in cell-to-cell voltages were observed.  This is attributed to tl 

treatment and storage conditions.  The average discharge voltage 

for baseline cathode, 3.48 V for (CoPc)  catalyzed cathode and 3 

catalyzed cathode.  The discharge time at 1 mA/cm2 was 60 hours 

71 hours for (CoPc)  catalyzed cells and 57 hours for FePc cata; 

catalyst does not improve life at 1 mA/cm2 rate but does at 5 n 

for this behavior is that FePc undergoes decomposition on longe 

SOCI2. Because of the catalytic ability of FePc to improve eel 

the achieved power is still higher at the low rate discharge, 

catalyst seems to modify the reaction mechanism whereby no gas* 

to form.  This results in lower cell pressure. 

After discharge to 0.7 V, the diodes were removed and cells we 

forced overdischarge into reversal at various rates.  Their d. 

in Table 7.  Cells 19-21 showed erratic behavior during force 

three cells differed from the other cells in that they had mo 

electrode stacks.  The behavior of other cells with reduced a 

to be identical with and without electrolyte insoluble (CoPc 

them sustained forced overdischarge current density of 20 mA 

1002 depth of discharge time. However, FePc catalyzed cells 

current density of 30 mA/cm2 during forced overdischarge. 
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Table 6. Discharge Performance of Cathode-Limited Cells 

Cell # Catalyst Rate, mA/cm2 
Dis 
to 

»charge 
2.0 V, 

57 

Time 
(Hrs) 

Cell Volt 
Voltage 

3.36 

Pressui. 
100% DOD 

19* 1 - 

20* (CoPc)n 1 74 3.38 20 
21* - 1 57 3.02 16 

22 (CoPc)Q 1 73 3.30 31 

23 FePc 1 58 3.50 16 

24 - Mechanical Failure 

25 - 1 66 3.37 16 

26 (CoPc)Q 1 65 3.10 24 

26 (CoPc)n 1 73 3.47 17 

28 - 1 60 3.06 14 

29 - 5 8.6 3.02 7 

30 FePc 5 11.2 3.28 6 

31 - 1 65 3.38 23.5 

32 FePc 1 56 3.53 15 

33 (CoPc)n 1 71 3.48 14 

* Contained only one layer of separator and a longer electrode stack. 
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Call  * 

19 

Cjcalyjc 

TabU I .     Forced Overdlscnarge of Cathoda-Linlted Calls  Into  Reversal 

PIIIIMI ac 
cha End of 

Ovardlacharga, Ovardlacharga 
Race (mA/ca ) 

Call 
Voltage, 

V 
DOOD,* 

0.5 -.10 105 

1.0 -.2 91 

2.0 -.2 100 

5.0 -.5 100 

TEF 

20 (CoPO. 0.5 -1.2 50 39 Call voltage, 
discontinued 

21 0.5 -.2 150 30 Call voltage, 
discontinued 

22 

23 

(CoPe). 

TaFePe 

25 

5.0 

5.0 

5.0 

10.0 

15.0 

20.0 

20.0 

5.0 

10.0 

15.0 

15.0 

-.36 200 

-.36 -• 5.0 12 

-.16 500 

-.4 400 

-.8 200 

-1.3 500 

-1.3 -»-5.0 5 

-0.2 200 

-0.6 1100 

-1.0 100 

-1.0 -»-5.0 10 

-2.4 72 

-3.5 230 

-4.3 360 

-O.10 170 

-0.15 550 

-0.20 600 

-0.32 720 

-0.32 -»-5.0 320 

-0.35 so 
-0.76 700 

-1.05 800 

-1.40 1280 

64 

>100 

43 

48 

61 

96 

>100 

47 

108 

120 

>150 

Call vented 

Cell vented 

Call vented 

26 

27 

(CoPe)n 

(CoPe)n 

28 

5.0 

7.0 

10.0 

5.0 

10.0 

IS.O 

20.0 

20.0 

1.0 

10.0 

13.0 

20.0 

52 

65 

>100 

25 

32 

36 

100 

23 

33.5 

42 

47.5 

Stopped before 
voltage dropped 
below -7.0V 

Forced overdlacharge 
Discontinued when 
voltage dropped below 
-5.0V 

Forced overdlscharge 
discontinued 

29 

30 

31 

Uaa dlsaaseablad after dlacharge and analysed for alectrocbamlcally consumed llthlua 
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The cell pressure increases slightly (except for FePc cells) during discharge 

and the increase accelerates for all cells when overdischarged and depends 

upon the rate.  Cell failure was usually accompanied by a spontaneous spike in 

pressure beyond 200 psig and sharp voltage drop. 

All cells were postmortemed after overdischarge.  It was noticed that at the 

end of overdischarge, lithium was completely consumed leaving bare stainless 

steel grids.  The products formed during cell reversal seem to react with lithium. 

It is interesting to note that this finding contradicts the reported data in which 

it was reported that lithium either deposits or intercalates with carbon in the 

cathode during cell reversal.  Our data show that free lithium does not exist 

probably due to its consumption by chemical reactions with cell reversal products. 

In order to further examine the thermal behavior of cathode-limited cells during 

discharge and forced overdischarge into reversal, wrap cells were built with 

thermocouple, pressure transducer and vent valve.  The temperature of the cell 

at the center of the wrap was measured with an Omega type-T thermocouple.  In 

Figures 47-52, the temperature, pressure and voltage behavior of wrap cells are 

presented.  Irrespective of cathode types i.e., undoped cathode, FePc or 

(CoPc)n doped cathodes , the cells either exploded or vented under forced over- 

dischrge current rate of 30 mA/cm2 after 1-5 hours.  The cell failure is preceded 

by a sudden increase in both temperature and pressure.  The temperature, pressure 

and voltage behavior of these cells six to seven minutes prior to the cell 

failure are given in Figures 53-56.  All have shown similar characteristics.  It 

can be concluded that the thermal runaway conditions are created during cell 

reversal.  Further, the current density and cell design appear to influence the 

thermal behavior.  Even in the case of the cathode-limited design, the amount of 

lithium left after discharge seems to influence the cell safety as shown in 

Figures 57 and 58.  The low sustaining current rate capability of these cells might 

be due to depletion of lithium at an early stage and therefore drop in voltage 

causing severe heat generation.  However, the anode-limited cells experienced 

higher temperatures without causing cell explosion. 
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In summary, it can be said: 

• Anode-limited design cells experienced severe heat generations leading to 

higher cell pressures even at low current densities during reversal studies. 

However, none of these cells vented or exploded.  Postmortem after reversal studies 

showed lithium dendrite formation on the cathode surface.  At high cell reversal 

temperatures, the lithium dendrites, if formed, could be consumed chemically. 

Furthermore, the reactive species produced under these conditions could also andergc 

changes leading to new stable species.  Therefore, care should be taken to interpret 

the reaction mechanism based on analysis of products. 

• Cathode-limited design cells sustained current densities up to 20 mA/cm2 for 

100% depth of overdischarge into reversal.  However, all cells exhibited sudden 

increase in both pressure and temperature leading to either venting or explosion. 

The cell failure appeared to be related to thermal runaway conditions.  Both 

chemical reactions and cell shorting could cause unexpected safety hazards. 

• When the cathode-limited design cells were built with only slightly excessive 

lithium, they were able to sustain very low current rates during cell reversal. 

Further experiments are needed to understand the cell safety on the amount of 

lithium left at the end of discharge. 

• The product analysis during forced overdischarge into cell reversal is needed 

to understand the reaction mechanism leading to the cell failure.  The analysis 

of products has to be done throughout the forced overdischarge into reversal 

to examine the critical concentration of the product or products, if any, that 

are participating in the exothermic reactions. Cell reversal of anode-limited 

design cells should be done at low operating temperatures in order to identify 

the unstable species produced. 
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5.0 MISCELLANEOUS STUDIES 

ELECTROCHEMICAL 

Elucidation of kinetic and reaction mechanisms of thionyl chloride reduction 

with and without electrocatalysts such as CoPc, and FePc is important to 

understand the role of intermediates and/or final products.  It was shown 

that CoPc and FePc not only catalyze the electrochemical reduction rate of 

S0C12 but also modify the reaction mechanisms.  In Figure 59, the cyclic 

voltammograms at a pressure annealed pyrolytic graphite in IM LiAlCl«/S0Cl2 

electrolyte with and without catalysts are shown.  At a fresh and dry electrode 

surface, two reduction peaks are obtained without catalyst. With the addition 

of metal free phthalocyanine complex, the reduction peaks merged and peak 

current increased threefold.  If monomeric cobalt phthalocyanine, CoPc, is 

added, the peak shifts to more positive potential.  Furthermore, the cyclic 

voltammograms with catalysts do not contain reduction or oxidation peaks beyond 

2.0 V. 

Addition of S02 to the electrolyte without catalyst generate a reduction peak 

at 2.0 V.  However, with- CoPc catalyst, S02 reduction peak does not appear whic! 

could be due to the saturation of the electrode with adsorbed products. 

Similar results are also observed with the addition of Cl2.  Further studies 

are needed to identify peak positions of known additives and generate and 

identify species between 2 and -5 volt vs lithium reference electrode. 

FTIR 

Studies on the nature of S0C12 adsorption with carbon cathode with and without 

catalyst (CoPc or FePc) were initiated by FTIR specroscopic techniques. 

Preliminary FTIR spectra (Figures 60-62) of S0C12 with and without catalyst 

showed no significant variation in peak positions.  The electrolyte thickness 

has to be minimized to study actual adsorbed layers.  Further studies 

to optimize the FTIR cell design experimental conditions are needed. 
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o-o NO CATALYST 
* METAL FREE 

PHTHALOCYANINE ADDED 
CoPc ADDED 

1 1 1 
4 3 2 1 

•VOLTAGE VS LITHIUM REFERENCE ELECTRODE 

FIGURE 59.  CYCLIC VOLTAMMOCRAMS AT PRESSURE ANNEALED PYROLYTIC GRAPHITE 
(0.178 era2) IN IM LiAlClu/SOCla ELECTROLYTE.  SWEEP RATE 
100 rav/sec. 
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Li/SOaCla SYSTEM 

Wrap cells of cathode-limited design built; with and without (CoPc)  catalyst, 

were activated with 1.5M LiAlCl«/S02Cla electrolyte in order to evaluate the 

effect on both performance and the safety of the system.  The data of eight 

such cells are given in Table 8.  The discharge cell life increases nearly by 

20% over that of Li/S0Cl2. However, the cells failed after only 652 of depth 

of forced overdischarge into reversal. The cause of cell failure was attributed 

to the electrical discontinuity. Postmortem of the cells showed both lead wires 

and anode grid were severely corroded.  All cells exhibited pressure spike, 

temperature rise and voltage drop just before the cell failure.  None of the 

cells, however, either exploded or vented.  If stainless steel grids were 

replaced with nickel grids, the cell reversal time decreases further.  Further 

studies are needed to identify the reactive species produced during reversal and 

the cause of grid corrosion. 
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6.0  SUMMARY AND CONCLUSIONS 

Temperature-pressure studies of D-cells showed: 

No change in final pressure whether or not the cells were subjected 

to heat/cool cycles after various depths of discharges. 

Maximum cell pressure at the end of 100% depth of discharge at 

1 mA/cm2 rate were 40 and 100 psig corresponding to 30 and 70°C 

operating temperatures, respectively. 

Long term reservoir storage studies revealed: 

Stability of (CoPc)Q in 1.5M LiAlClu/S0Cl2 electrolyte. 

Surface corrosion on 316L and 321 stainless steel specimens. 

Higher corrosion rates on 321 than on 316L. 

Higher corrosion rates in acid electrolyte than neutral electrolytes. 

Initial corrosion film inhibits or reduces further corrosion. 

Forced overdischarge into cell reversal studies showed: 

(CoPc)  catalyzed cathodes improved cell voltages and did not show 

adverse effects on the behavior of cells during forced overdischarge. 

Cathode-limited design cells sustained current densities up to 

20 mA/cm3 for 1002 of nominal cell capacity during forced overdischarge 

into cell reversal.  However, these cells showed unpredictable venting 

or exploding behavior, thus making them less attractive.  Further, the 

current sustaining rate capability decreased when cells were built with 

lesser amounts of lithium.  Based on the data of a few experiments 

carried out, it appears that balanced cells might be much more dangerous 

than cells having either anode-limited or cathode-limited design. 

In all cases, the cell failure appears to be related to thermal runaway 

conditions. 
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Anode-limited cells sustained higher current densities ( 20 mA/cm2) 

than cells of cathode-limited design.  These cells experience severe 

heat generations leading to high cell pressures during cell reversal. 

However, none of the cells with optimized electrode stacks either 

vented or exploded.  Reactive chemical species or lithium dendrites 

formed during discharge and forced overdischarge into cell reversal, 

if any, seemed to undergo changes leading to the formation of stable 

species at the high temperature environment in anode-limited design 

cells.  Therefore, we believe that cells of anode-limited design are 

much safer under abuse conditions such as those described in NAVSEA's 

Instruction 9310.1A. 

Fundamental Studies 

Further electrochemical and non-electrochemical (FTIR) studies, with 

and without catalysts, are needed to identify the reactive species 

produced and the nature of S0C12 adsorption. 

Li/SOaCla System 

Li/S02Cl2 cells produced longer discharge life.  Severe anode corrosion 

due to parasitic reactions was also observed during discharge. 

Future forced overdischarge into cell reversal, both nickel and 

stainless steel grids and lead wires, were severely corroded.  Grid 

and lead wire corrosion appears to lead to the electrical discontinuity. 

During normal discharge, grid and lead wire corrosion was not observed. 

During studies are needed to understand the cause for the grid and lead 

wire corrosion. 
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